Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker.

نویسندگان

  • Miki Nagase
  • Shigeru Shibata
  • Shigetaka Yoshida
  • Takashi Nagase
  • Takanari Gotoda
  • Toshiro Fujita
چکیده

Recent clinical studies implicate proteinuria as a key prognostic factor for renal and cardiovascular complications in hypertensives. The pathogenesis of proteinuria in hypertension is, however, poorly elucidated. Podocytes constitute the final filtration barrier in the glomerulus, and their dysfunction may play a pivotal role in proteinuria. In the present study, we examined the involvement of podocyte injury in Dahl salt-hypertensive rats, an animal model prone to hypertensive glomerulosclerosis, and explored the effects of inhibition of aldosterone. Four-week-old Dahl salt-resistant and salt-sensitive rats were fed a 0.3% or 8.0% NaCl diet. Some salt-loaded Dahl salt-sensitive rats were treated with a selective aldosterone blocker eplerenone (1.25 mg/g diet) or hydralazine (0.5 mmol/L). After 6 weeks, salt-loaded Dahl salt-sensitive rats developed severe hypertension, proteinuria, and glomerulosclerosis. Immunostaining for nephrin, a constituent of slit diaphragm, was attenuated, whereas expressions of damaged podocyte markers desmin and B7-1 were upregulated in the glomeruli of salt-loaded Dahl salt-sensitive rats. Electron microscopic analysis revealed podocyte foot process effacement. Podocytes were already impaired at as early as 2 weeks of salt loading in Dahl salt-sensitive rats, when proteinuria was modestly increased. Both eplerenone and hydralazine partially reduced systemic blood pressure as measured by indirect and direct methods in salt-loaded Dahl salt-sensitive rats, but only eplerenone dramatically improved podocyte damage and retarded the progression of proteinuria and glomerulosclerosis. Our findings suggest that podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and that inhibition of aldosterone by eplerenone is protective against podocyte damage, proteinuria, and glomerulosclerosis in this hypertensive model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of central nervous system aldosterone synthase and mineralocorticoid receptors in salt-induced hypertension in Dahl salt-sensitive rats.

In Dahl salt-sensitive (S) rats, high salt intake increases cerebrospinal fluid (CSF) Na(+) concentration ([Na(+)]) and blood pressure (BP). Intracerebroventricular (ICV) infusion of a mineralocorticoid receptor (MR) blocker prevents the hypertension. To assess the role of aldosterone locally produced in the brain, we evaluated the effects of chronic central blockade with the aldosterone syntha...

متن کامل

Regression of Glomerular and Tubulointerstitial Injuries by Dietary Salt Reduction with Combination Therapy of Angiotensin II Receptor Blocker and Calcium Channel Blocker in Dahl Salt-Sensitive Rats

A growing body of evidence indicates that renal tissue injuries are reversible. We investigated whether dietary salt reduction with the combination therapy of angiotensin II type 1 receptor blocker (ARB) plus calcium channel blocker (CCB) reverses renal tissue injury in Dahl salt-sensitive (DSS) hypertensive rats. DSS rats were fed a high-salt diet (HS; 4% NaCl) for 4 weeks. Then, DSS rats were...

متن کامل

Podocyte as the target for aldosterone: roles of oxidative stress and Sgk1.

Accumulating evidence suggests that mineralocorticoid receptor blockade effectively reduces proteinuria in hypertensive patients. However, the mechanism of the antiproteinuric effect remains elusive. In this study, we investigated the effects of aldosterone on podocyte, a key player of the glomerular filtration barrier. Uninephrectomized rats were continuously infused with aldosterone and fed a...

متن کامل

Renal arteriolar injury by salt intake contributes to salt memory for the development of hypertension.

The role of salt intake in the development of hypertension is prominent, but its mechanism has not been fully elucidated. Our aim was to examine the effect of transient salt intake during the prehypertensive period in hypertensive model animals. Dahl salt-sensitive rats and spontaneously hypertensive rats were fed from 6 to 14 weeks with low-salt (0.12% NaCl), normal-salt (0.8% NaCl), high-salt...

متن کامل

Mineralocorticoid receptors, salt-sensitive hypertension, and metabolic syndrome.

Obese persons with metabolic syndrome often have associated with salt-sensitive hypertension, microalbuminuria, and cardiac dysfunction, and the plasma aldosterone level in one-third of metabolic syndrome patients is clearly elevated. Hyperaldosteronism, which may be caused at least partially by certain adipocyte-derived factors, contributes to the development of proteinuria in obese hypertensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 47 6  شماره 

صفحات  -

تاریخ انتشار 2006